Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 23(4)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527466

RESUMO

The 2021 Student Debates of the Entomological Society of America (ESA) were held at the Annual Meeting in Denver, CO. The event was organized by the Student Debates Subcommittee (SDS) of the Student Affairs Committee (SAC). The theme of the 2021 Student Debates was "Transforming Entomology to Adapt to Global Concerns", with 3 topics. Each topic had an unbiased introduction and 2 teams. The debate topics were (i) Nonnative insect introduction is an ethical approach for counteracting proliferation and overpopulation of consumers, (ii) What is the best technology to control undesirable insect pests in urban and agricultural settings? and (iii) Compared to other solutions, like plant-based diets, insect farming is the best method to address rising human global food and nutrient supply demands. Unbiased introduction speakers and teams had approximately 6 months to prepare for their presentations.


Assuntos
Agricultura , Entomologia , Humanos , Animais , Fazendas , Insetos , Estudantes
2.
J Econ Entomol ; 115(4): 1054-1058, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35604389

RESUMO

Indoor storage of honey bees (Apis mellifera L.) during winter months has been practiced for decades to protect colonies from the adverse effects of long, harsh winter months. Beekeepers have recently employed indoor storage to reduce labor, feeding costs, theft, and woodenware degradation. Despite the growing number of colonies stored indoors, national survey results still reveal high losses. Varroa mites (Varroa destructor Anderson and Trueman) are the most critical threat to colony winter survival and health of colonies because they contribute to the transmission of viruses and colony mortality. To investigate the effect of high CO2 on varroa mites during the indoor storage of honey bees, 8-frame single deep colonies were stored in two separate environmental chambers at 4°C each. One environmental chamber was set at 8.5% CO2 (high CO2), while the other was set at low CO2 (0.12%). Dead and falling mites were collected and counted from the bottom of individual colonies weekly during the experiment. There was a significant difference in mite mortality of colonies with high CO2 compared to colonies held at low CO2. These results indicated that high CO2 could increase mite mortality during the period of indoor storage, potentially improving honey bee health coming out of the winter months. Our research offers a critical addition to beekeepers' tools for managing varroa mite populations.


Assuntos
Himenópteros , Varroidae , Animais , Abelhas , Dióxido de Carbono/farmacologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...